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Abstract

Background: Articular cartilage shows little or no capacity for intrinsic repair, generating a critical need of
regenerative therapies for joint injuries and diseases such as osteoarthritis. Human-induced pluripotent stem cells
(hiPSCs) offer a promising cell source for cartilage tissue engineering and in vitro human disease modeling;
however, off-target differentiation remains a challenge during hiPSC chondrogenesis. Therefore, the objective of this
study was to identify cell surface markers that define the true chondroprogenitor population and use these markers
to purify iPSCs as a means of improving the homogeneity and efficiency of hiPSC chondrogenic differentiation.

Methods: We used a CRISPR-Cas9-edited COL2AT-GFP knock-in reporter hiPSC line, coupled with a surface marker
screen, to identify a novel chondroprogenitor population. Single-cell RNA sequencing was then used to analyze the
distinct clusters within the population. An unpaired t test with Welch’s correction or an unpaired Kolmogorov-
Smirnov test was performed with significance reported at a 95% confidence interval.

Results: Chondroprogenitors expressing CD146, CD166, and PDGFR3, but not CD45, made up an average of 16.8%
of the total population. Under chondrogenic culture conditions, these triple-positive chondroprogenitor cells
demonstrated decreased heterogeneity as measured by single-cell RNA sequencing with fewer clusters (9 clusters
in unsorted vs. 6 in sorted populations) closer together. Additionally, there was more robust and homogenous
matrix production (unsorted: 1.5 ng/ng vs. sorted: 19.9 ng/ng sGAG/DNA; p < 0.001) with significantly higher
chondrogenic gene expression (i.e., SOX9, COL2AT, ACAN; p < 0.05).

Conclusions: Overall, this study has identified a unique hiPSC-derived subpopulation of chondroprogenitors that
are CD1467/CD166"/PDGFRB*/CD45~ and exhibit high chondrogenic potential, providing a purified cell source for
cartilage tissue engineering or disease modeling studies.
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Background
Articular cartilage is the load-bearing tissue that lines
the ends of long bones in diarthrodial joints, serving to
resist compression and provide a nearly frictionless sur-
face during joint loading and movement [1, 2]. The
extracellular matrix of cartilage is comprised primarily
of type II collagen and proteoglycans, which are synthe-
sized by the main residing cell type, chondrocytes [3, 4].
However, because it is aneural and avascular, cartilage
shows little or no capacity for intrinsic repair [4]. Trau-
matic injury and a chronic inflammatory state lead to ir-
reversible degeneration of the tissue, driving diseases
such as osteoarthritis (OA) [5, 6]. Current treatments
only target disease symptoms, creating a great demand
for tissue-engineered cartilage as a system for disease
modeling, drug testing, and tissue replacement.
Human-induced pluripotent stem cells (hiPSCs) offer
a promising source for cartilage tissue engineering and
in vitro disease modeling [7] as they have virtually un-
limited expansion capacity, can be genetically modi-
fied, and can avoid many of the ethical considerations
associated with embryonic stem cells [8, 9]. Despite re-
ports of several chondrogenic differentiation protocols
for pluripotent stem cells [10—15], incomplete differen-
tiation and cell heterogeneity remain as the major
obstacles for iPSC chondrogenesis [16, 17]. This chal-
lenge has been addressed in other stem and progenitor
cell types by prospectively isolating cells that exhibit
chondrogenic lineage commitment using surface
marker expression. For example, previous studies have
identified chondroprogenitors within adult articular
cartilage that can be isolated using fibronectin adhe-
sion assays since progenitors express integrins a5 and
B1 [18, 19]. Additionally, mesenchymal progenitor
cells, which express CD105, CD166 (ALCAM), and
CD146 (MCAM), have been reported to have a high
chondrogenic potential [19-21]. Adult multipotent
cells, such as the bone marrow-derived mesenchymal
stem cells (MSCs) or adipose-derived stem cells
(ASCs), exhibit chondrogenic potential and have been
used extensively for cartilage tissue engineering. They
are often characterized by a range of cell surface
marker expression, including CD105, CD73, CD90,
CD271, CD146, Stro-1, and SSEA-4 [22]. In an effort
to identify a more developmentally relevant progenitor
population, self-renewing human skeletal stem cells
characterized by CD164", CD737, and CD146  showed
chondrogenic differentiation when implanted in a
mouse renal capsule [23]. In another study, limb bud
cells expressing CD73 and BMPR1pB while having low
to no expression of CD166, CD146, and CD44 were
proposed to be the earliest cartilage committed cells
(prechondrocytes) in human embryonic development
[24]. However, surface marker characteristics of
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hiPSC-derived chondroprogenitors or chondrocytes re-
main to be identified.

Previously, our lab used green fluorescent protein
(GFP) reporter systems to track the expression of colla-
gen type II alpha 1 chain (COL2AI) in mouse [25] and
human [26] iPSCs, allowing for the prospective isolation
and purification of COL2A1-GFP+ chondrogenic cells
during the differentiation process. Despite the fact that
this approach significantly enhanced homogeneity of
iPSC chondrogenesis [26], genome editing is required to
create a reporter line, hindering potential clinical trans-
lation. In this regard, the identification of cell surface
markers that are directly representative of this COL2A1-
positive population could greatly enhance the prospect-
ive isolation and purification of chondroprogenitors,
without requiring genetic modifications to the cell line.

In this study, we used a COL2A1-GFP knock-in re-
porter hiPSC line as a tool to identify cell surface
markers that are highly co-expressed with COL2A1 to
test the hypothesis that this subpopulation of chondro-
progenitor cells will show increased purity and chondro-
genic capacity. Single-cell RNA sequencing (scRNA-seq)
was then used to investigate the gene expression profile
of this population and to identify subsets within it.
Matrix production, cell morphology, and gene expres-
sion were measured to evaluate chondrogenic ability of
unsorted and sorted chondroprogenitor cells. This chon-
droprogenitor population appears to represent an inter-
mediate step in the developmental pathway of in vitro
hiPSC chondrogenesis in which off-target differentiation
also occurs. The identification of surface markers to pur-
ify this population of chondroprogenitor cells via sorting
will enhance the efficiency of hiPSC chondrogenic differ-
entiation for use in tissue engineering, in vitro disease
modeling, and drug testing.

Methods

Materials and methods are briefly summarized. A de-
tailed description is provided in supplemental
information.

hiPSC lines and culture

Two hiPSC lines were used in the current study: RVR
COL2AI1-GFP knock-in line (RVR) and BJFF.6 line
(BJFF). Both lines were maintained on vitronectin-coated
plates (VIN-N; Fisher Scientific, USA, A14700) with
daily medium changes. Cells were passaged at approxi-
mately 90% confluency and induced into mesodermal
differentiation at 40% confluency.

Mesodermal differentiation

hiPSCs were induced into mesodermal differentiation in
monolayer according to the previously published proto-
col [26]. In brief, cells were fed daily with various
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cocktails of growth factors and small molecules driving
lineage differentiation (anterior primitive streak, paraxial
mesoderm, early somite, sclerotome, and chondropro-
genitor) in differentiation medium. Upon differentiation
into the chondroprogenitor stage, cells were dissociated
and were used for cell sorting and chondrogenic differ-
entiation as appropriate.

Fluorescence-activated cell sorting (FACS)
Chondroprogenitor cells were resuspended in FACS Buf-
fer (phosphate-buffered saline without calcium and mag-
nesium (PBS_/ 7; Gibco, USA, 14-190-250) with 1% fetal
bovine serum (FBS) and 1% penicillin/streptomyocin/
fungizone (P/S/F; Gibco, USA, 15-240-062) and stained
with various antibodies that are conventionally consid-
ered markers for mesenchymal progenitor cells (Supple-
mental Table S1). Cells were then sorted by an Aria-II
FACS machine.

10X chromium platform scRNA-seq

Cells were thawed at 37°C and resuspended in PBS™~
with 0.01% bovine serum albumin (BSA; Invitrogen,
USA, AM2616) at a concentration of 2000 cells/pl. Cell
suspensions were submitted to the Genome Technology
Access Center (GTAC sequencing core) at Washington
University in St. Louis for library preparation and se-
quencing. In brief, 10,000 cells per sample were loaded
on a Chromium Controller (10X Genomics, USA) for
single capture. Detailed methods for quality control and
processing for scRNA-sea data are described in supple-
mental information.

Expansion of chondroprogenitor cells

Sorted and unsorted chondroprogenitor cells were
plated on non-coated flasks and cultured in MEM alpha
media (Gibco, USA, 12571048) with 1% penicillin/
streptomycin (P/S; Gibco, USA, 15070063), 50 pug/ml L-
ascorbic acid 2-phosphate (ascorbate; Sigma-Aldrich,
USA, A4544), and 10 ng/ml basic fibroblast growth fac-
tor (bFGF; R&D Systems, USA, 233FB001MGC). Cells
were fed every 3 days until 80-90% confluency prior to
further expansion or chondrogenesis. Chondroprogeni-
tor cells were passaged up to four times.

Chondrogenic differentiation

Sorted, unsorted, and expanded chondroprogenitor cells
(after 12 days of mesodermal differentiation) were resus-
pended at 3 x10° cells/mL in chondrogenic medium
supplemented with 10ng/ml human transforming
growth factor-beta 3 (TGF-$3; R&D Systems, USA, 24-
3B3-200CF). Chondrogenic pellets were cultured at
37 °C for 28 days. The medium was changed every 3—4
days.
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Histology and immunohistochemistry

After 28 days of chondrogenic differentiation, pellets
were fixed and sectioned at 8 um. Slides were either
stained with safranin-O and hematoxylin for glycosami-
noglycans evaluation or labeled against various collagen
antibodies including COL1A1, COL2A1, COL6A1, and
COLI10AL

Biochemical analysis

Chondrogenic pellets (28 days of chondrogenesis) were
digested at 65°C overnight in a papain solution. The
PicoGreen (Invitrogen, USA, P7589) and 1,9-dimethyl-
methylene blue (Sigma-Aldrich, USA, 341088), with
chondroitin-4-sulfate (Sigma-Aldrich, USA, C9819) as a
standard, assays were used according to the protocols to
quantify DNA and sGAG, respectively.

Gene expression

Chondroprogenitor cells were lysed and day 28 pellets
were homogenized. Gene expression was analyzed using
the AACt method relative to undifferentiated hiPSCs
with the reference gene TATA-box-binding protein
(TBP) [27]. An alternative method to analyze gene ex-
pression normalized the Cr value of the gene of interest
to that of the TBP for the same sample. Sequences of
primers can be found in the Supplemental Table S2.

Statistical analysis

Quantification of surface marker expression was per-
formed 8 separate times with technical replicates of n =
3—4 for each experiment. Biochemical analysis and RT-
qPCR were performed on the pellets collected from two
independent sorting experiments (n =3-4 samples per
group per experiment). Gene expression and sGAG/
DNA data were tested for normality using the Shapiro-
Wilk test. An unpaired ¢ test with Welch’s correction
was then performed assuming a Gaussian distribution. If
data was not normal, an unpaired Kolmogorov-Smirnov
test was performed. All calculations were performed
using GraphPad Prism (GraphPad Software; version 8.0).
Two-tailed p values were calculated and reported at a
95% confidence interval.

Results

COL2A1-positive chondroprogenitor cells express
PDGFRp, CD146, and CD166

COL2A1-GFP reporter hiPSCs were differentiated into
chondroprogenitor cells along the mesodermal lineage
for 12 days as previously described [26]. After the 12
days of differentiation, flow cytometric analysis showed
that, on average, 4.27% of the population expressed
COL2A1 based on GFP expression (Fig. la). The
COL2A1-positive cells were assumed to be chondropro-
genitors with a unique surface marker profile. The cells
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Fig. 1 Surface marker analysis and sorting strategy to identify progenitors with robust chondrogenic potential from heterogenous
chondroprogenitor (CP) cells. a Flow cytometry showed approximately 4.27% of cells expressed COL2AT-GFP. b, ¢ Chondroprogenitors were
labeled for various surface markers and analyzed for co-expression with COL2A1-GFP. b Most COL2AT-GFP* cells did not express CD271, CD105,
CD73, and BMPR1{. ¢ PDGFRB, CD146, and CD166 were co-expressed with COL2AT-GFP. d A schematic representing the experimental design. The
RVR cell line with the COL2AT-GFP reporter was differentiated into chondroprogenitor cells. Surface marker analysis indicated that PDGFRB, CD146,
and CD166 expression were highly co-expressed with COL2AT but not CD45. e Cells expressing these desired markers were sorted from wildtype
BJFF chondroprogenitor cells. To evaluate the chondrogenic potential of the sorted cells, pellets from the sorted cells were either made
immediately post-sorting or formed after in vitro expansion. f A higher percentage of the total cell population (~ 16.8%) was triple positive for
the desired markers compared to the population not expressing any of these markers. *p < 0.05. Data represented as mean + SEM. n = 7-8
independent experiments. See also Figure S1
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were labeled for surface markers commonly associated
with MSCs and/or chondroprogenitors in the developing
limb bud: BMPRI1f, CD73, CD105 CDI146, CD166,
CD271, and PDGFR [22-24]. Of the total population,
less than 1% expressed COL2A1 in addition to either
CD271 (0.4%), CD105 (0.16%), CD73 (0.09%), or
BMPRI1B (0%) (Fig. 1b). Interestingly, 2.32%, 2.17%, or
1.32% of the total population co-expressed COL2A1 with
PDGFRp, CD146, or CD166, respectively (Fig. 1c). Since
these markers appear to be the most highly correlated
with COL2A1 expression of the previously identified as
MSC and/or chondroprogenitor markers selected, cells
were sorted based on the expression of these markers
for this study. Sorting also removed cells expressing
CD45 (<15% of total cells) to eliminate any non-
chondrogenic hematopoietic stem cells potentially de-
rived during mesoderm differentiation (Fig. 1d).

PDGFRp-, CD146-, and CD166-enriched
chondroprogenitor cells

The BJFF hiPSC line (wildtype without genome editing)
was differentiated into chondroprogenitor cells accord-
ingly (12days in a monolayer). Cells, either directly
underwent chondrogenic pellet culture, were expanded,
were saved for scRNA-seq, or were labeled for the sur-
face markers of interest (Fig. 1d). Fluorescence-activated
cell sorting (FACS) was used to sort live chondropro-
genitor cells negative for CD45 and positively expressing
PDGERp and CD146, followed by expression of CD166
(Fig. 1e). Cells not expressing any of these surface
markers were also analyzed as a negative control. Ap-
proximately 16.5% of the total chondroprogenitor cell
population was triple positive for PDGFRp, CD146, and
CD166, which was significantly higher than the percent-
age of the cells (7.2% of the total cell population) that
were triple-negative for these markers (Fig. 1f). As with
unsorted cells, sorted cells were also collected and either
pelleted for chondrogenesis, expanded, or saved for
scRNA-seq, as described in Fig. 1d.

scRNA-seq reveals that unsorted chondroprogenitor cells
contained diverse cell populations

We next used scRNA-seq to explore the cell diversity
and genetic profiles of unsorted chondroprogenitor cells.
At least 9 distinct cell populations (cell clusters) were
observed in unsorted chondroprogenitor cells (Fig. 2a).
Among these populations, 5 of them were enriched for a
variety of neural cell markers such as SOX2, OTX1, NES,
and PAX6 (Fig. 2b), likely representing populations of
the neurogenic lineage. Of these, SOX2, OTXI, and
PAX6 expression were significantly downregulated with
sorting according to RT-qPCR (Figure S2A). Further-
more, we found that 3 cell populations exhibited high
expression levels of several mesenchyme markers
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including PRRX1, COLIAI, COL5A1, and COL6AI
which were comparable between sorted and unsorted
groups, while only a small cell population (2.3% of total
cells) expressed chondrogenic markers such as SOX9,
COL2A1, IGFBP5, and NKX3-2 (Fig. 2b, ¢, S2B, and
S2C). Using Gene Ontology (GO) enrichment analysis of
the gene sets representing each cell cluster (Fig. 2d and
S1A), we observed that cells expressing SOX9 and
COL2A1 demonstrated gene sets enriched for protein
translation and skeletal system development.

scRNA-seq reveals that sorting enriched SOX9/COL2A1+
cells

scRNA-seq of sorted chondroprogenitor cells indi-
cated that there were at least 6 cell populations con-
sisting of PDGFRB*/CD146"/CD166" cells (Fig. 3a).
Surprisingly, there was still a small percentage of
cells (4% of total sorted cells) expressing SOX2 and
NES, despite the stringent sorting regime (Fig. 3b, c).
We also observed that SOX2/NES" cells exhibited a
high expression of CD47, an integrin-associated
protein [28] (Figure S1B). Nevertheless, sorting still
significantly enriched cells positive for SOX9 and
COL2A1 by >11-fold (27% of total sorted cells vs.
2.3% of total unsorted cells). Interestingly, the overall
gene expression of these chondrogenic genes was not
increased. In fact, COL2A1 was decreased with sort-
ing when evaluated by RT-qPCR (Figure S2C). We
observed that sorting slightly increased the percent-
age of the cells expressing ALCAM (CD166, 22.1% of
the unsorted cells vs. 28.3% of the sorted cells).
However, 9.9% of the total sorted cells were triple
positive for SOX9/COL2A1/ALCAM, while only 0.8%
of the total unsorted cells co-expressed these three
genes. Interestingly, we also found that ALCAM was
also expressed by both chondrogenic and neurogenic
progenitors (e.g., 31.9% of SOX9/COL2AI1" cells and
44.9% of SOX2/TTR" cells were positive for ALCAM
in the sorted group), implying ALCAM alone may
not be used as a sole marker for chondroprogenitor
cells. Additionally, we also observed that gene ex-
pression levels of the sorting makers were enriched
in the sorted population, with ALCAM highest in the
SOX9 and COL2AI cluster compared to the enrich-
ment of all three in the unsorted mesenchyme popu-
lation (Fig. 3d). Similarly, there was an enrichment of
some previously reported pro-chondrogenic markers [18,
19, 21, 24] in the sorted chondroprogenitor population;
specifically ITGAS and ENG (CD105) (Figure S3). Skeletal
system development, as expected, emerged as a significant
GO term in SOX9/COL2A1+ cells, while HMGB2/
TOP2A+ and LGALS1/PTTGI+ cells were enriched in
gene sets of cell division (Fig. 3e and S1C).
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expressed SOX9 and COL2A1. See also Figure S1

Fig. 2 Cell populations and GO enrichment analysis of unsorted chondroprogenitor cells. a scRNA-seq identified unsorted chondroprogenitor
cells contained at least 9 populations, which could be further categorized into 3 broad classes: neurogenic cells (blue dashed circle),
chondrogenic cells (green dashed circle), and mesenchyme (brown dashed circle). b Expression of signature genes of each cell lineage. ¢ GO
terms analysis (biological process) of each unique population. d Percentage of total unsorted chondroprogenitor cells in each unique cell
population. More than 20% of the unsorted chondroprogenitors were SOX2/TTR/NES+ neurogenic cells, while only small number of unsorted cells

Canonical correlation analysis (CCA) demonstrates high
enrichment of proliferative and mesenchymal genes in
sorted chondroprogenitor cells

CCA, a machine-learning method that performs linear
combinations of features across data sets that are max-
imally correlated, was used to integrate scRNA-seq data-
sets from sorted and unsorted cells [29]. Five major
conserved populations were identified after CCA align-
ment of the sorted and unsorted chondroprogenitor cells
(Fig. 4a). Among these populations, HISTIH4C" cells
accounted for the largest conserved population, while
the IGFBP5/COL2AI" cluster was the smallest. We next
explored how sorting enriches or decreases the levels of
gene expression within each individual population by
analyzing differentially expressed genes (DEGs) (Fig. 4b).
Within the IGFBP5/COL2AI* population, sorted cells
exhibited significantly upregulated expression of several
mesenchymal genes including TPMI, TAGLN, and
TMSBIO (indicated by the brown circle), which have
been suggested to be essential in chondrogenesis [30,
31]. Furthermore, within the IGFBP5/COL2A1" popula-
tion, sorted cells demonstrated significantly downregu-
lated expression of IGFBPS5 (indicated by the blue circle),
an important transcription factor inducing chondropro-
genitor cells into the chondrogenic lineage [32].

Sorting improved matrix production and homogeneity in

cartilaginous pellets

Sorted and unsorted cells from both the reporter and
wildtype lines underwent chondrogenesis in pellet cul-
ture for 28 days. Pellets stained with safranin-O for sul-
fated glycosaminoglycans (sGAGs) showed that sorting
increased matrix production as well as homogeneity of
cell morphology (Fig. 5a and S4). Additionally, the layer
of non-cartilaginous-like cells surrounding unsorted cell
pellets was eliminated in the pellets derived from sorted
cells. Biochemical analysis demonstrated that sorting sig-
nificantly increased the ratio of sGAGs to DNA in pel-
lets by almost 15-fold (unsorted: 1.5ng/ng vs. sorted:
19.89 ng/ng, Fig. 6a). Similarly, there was an increase in
production and homogeneity observed in sorted pellets
labeled for COL2A1 (Fig. 5b). In addition, IHC labeling
for COL1A1 showed a slight decrease at the perimeter
of the pellet while the labeling for COL10A1 showed an
increase in the respective matrix proteins with sorting
(Fig. 5¢, d). Additionally, pellets formed with sorted cells

had more localized staining of COL6A1 around the cells
as shown with IHC compared to the more diffused pat-
tern observed with unsorted cells (Figure S5).

Expression of cartilaginous genes was significantly higher
in pellets derived from triple-positive chondroprogenitor
cells

Gene expression in pellets derived from unsorted and
triple-positive sorted chondroprogenitor cells was ana-
lyzed using RT-qPCR. Chondrogenic genes SOX9 (un-
sorted 0.88-fold change vs. sorted 6.62 fold change),
ACAN (unsorted 7.22-fold change vs. sorted 1614-fold
change), and COL2A1 (unsorted 0.68-fold change vs.
sorted 1667-fold change) were significantly increased in
sorted pellets (Fig. 6b—d). Additionally, COLIAI (un-
sorted 0.74-fold change vs. sorted 25.91-fold change)
and COLIOAI (unsorted 2.69-fold change vs. sorted
54.32-fold change) were significantly higher in sorted
pellets compared to unsorted (Fig. 6e, f). Statistical sig-
nificance was maintained for all genes when analyzed al-
ternatively (Figure S6).

Chondrogenic capacity was maintained through one
passage of unsorted and sorted chondroprogenitor cells
Pellets derived from passage 1 (p1) sorted cells exhibited
the most robust and homogenous safranin-O staining as
compared to the pellets derived from sorted cells of later
passages and to the pellets derived from unsorted cells
of a similar passage (Figure S7). Pellets derived from p2-
4 unsorted and sorted chondroprogenitor cells had com-
parable staining and cell morphology with decreased
chondrogenic capacity (Figure S7).

Discussion

Using a COL2A1-GFP reporter line, we identified a novel
combination of surface markers (i.e., PDGFRB*/CD146"/
CD166"/CD45") depicting a unique progenitor popula-
tion with robust chondrogenic potential in hiPSC chon-
drogenesis. This finding was further confirmed by
significantly increased cartilaginous matrix production of
the prospectively isolated cells with these selected
markers from a wildtype, non-edited hiPSC line. The re-
sults of scRNA-seq of sorted cells revealed that cells
positive for PDGFRpB, CD146, and CD166 exhibited en-
hanced cell homogeneity with decreased neurogenic sub-
populations. These findings support the hypothesis that
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(See figure on previous page.)

Fig. 3 Cell populations and GO enrichment analysis of sorted chondroprogenitor cells. a scRNA-seq identified PDGFRB*/CD146"/CD166" cells
contained at least 6 populations. b Expression of signature genes of each cell lineage. The sorted cells were enriched for mesenchymal and
chondrogenic genes. ¢ Percentage of total sorted chondroprogenitor cells in each unique cell population. Twenty-seven percent of the sorted were
SOX9/COL2AT. Interestingly, a small percentage of cells (4% of total sorted cells) expressing SOX2 and NES was still observed. d PDGFRB/CD146%/
CD166" sorted cells may belong to the mesenchymal population (brown dashed circle) in unsorted cells. The green dashed circle indicates the
population that was positive for SOX9 and COL2AT. e GO terms analysis (biological process) showing skeletal system development was highlighted in
SOX9/COL2A T+ cells, while HMGB2/TOP2A+ and LGALS1/PTTG1+ cells were enriched in gene sets of cell division. See also Figure S1
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Fig. 4 CCA for integrated analysis of sorted and unsorted scRNA-seq datasets. a Five major conserved populations were identified after CCA
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Fig. 5 Histology and IHC for matrix proteins in RVR-COL2 and BJFF pellets. a Safranin-O staining for sGAG showing pellets derived from sorted
chondroprogenitor cells had more robust staining and homogenous cell morphology compared to pellets derived from unsorted cells in both
lines. b Labeling of COL2A1 showed similar results with an increase in COL2A1 in sorted pellets as opposed to unsorted which has isolated areas
of staining. ¢ There was little labeling of COL1A1 for both unsorted and sorted cell pellets. d Labeling for COL10AT was increased with sorting.
Scale bar =200 um. Inset scale bar =400 um. See also Figure S4 and S5
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sorting of hiPSC-derived chondroprogenitor cells with
surface markers can be used to purify progenitor cells
with enhanced chondrogenic potential, without the need
for genetic modification to improve hiPSC chondrogene-
sis [25, 26].

We previously reported that chondroprogenitor cells
at the end of mesodermal lineage differentiation had a
high expression of CD146 and CD166 [26]. In the
present study, we observed that these markers were also
co-expressed with COL2A1. CD146 and CD166, along
with CD105, have also been shown to be expressed in
chondroprogenitors in articular cartilage [19-21]. While
our chondroprogenitor cells did not co-express CD105
(ENG) with COL2A1, sorting did enrich CDI05 gene ex-
pression. Interestingly, it has been shown that CD105 it-
self may not indicate chondrogenic potential [33]. In
addition, scRNA-seq showed that sorted cells exhibited
increased expression of ITGB1 (CD29) and ITGAS
(CD49e), which have been deemed necessary for chon-
drogenic differentiation in progenitor cells and MSCs
[18, 19, 34]. Nevertheless, our chondroprogenitor cells
had somewhat different expression profiles than skeletal
progenitor cells identified previously in vivo [23, 24].
Moderate expression of CD164, a surface marker of the
skeletal stem cell [23], was conserved between the un-
sorted and sorted chondroprogenitor cells while many
other markers described were absent from both popula-
tions including prechondrocyte markers BMPR1B and
CD73 (NT5E) [24]. Therefore, the chondroprogenitor
population described in this study is a distinct, unique
subpopulation of iPSCs that possesses robust chondro-
genic potential.

Several factors may contribute to the differences in cell
surface markers that have been identified as markers of
chondrogenesis in these different cell types. First, in our
study, we used a differentiation protocol which follows
the paraxial mesodermal lineage of cartilage [26, 35].
Different types of cartilage follow various developmental
pathways (e.g., paraxial mesoderm vs. lateral plate meso-
derm), and therefore, the other studies could be investi-
gating these lineages; thus, the cells would have different
surface marker expression during differentiation [35-
37]. Another explanation may be the time point along
the developmental pathway in which the cells are being
investigated. Our surface marker profiles are based on
the expression of COL2A1. While COL2A1 is one of the
most prominent matrix proteins in articular cartilage [4]
and can indicate chondrogenic potential and determin-
ation of a chondrogenic fate [38], COL2A1 is a relatively
late marker of chondrogenesis [39]. Therefore, differ-
ences between the cell surface markers identified in our
study as compared to other previous work may reflect
differences in the prescribed differentiation pathway or
the specific subpopulation identified.
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In addition to the fact that COL2A1 expression is a
later chondrogenic marker, COL2AI expression was
found throughout the entire unsorted population includ-
ing neurogenic cells and sorting significantly decreased
its overall expression indicating that COL2AI" cells were
heterogeneous. This finding is consistent with studies
showing that COL2A1 expression may be a broader indi-
cator for the initial lineage specification of a variety of
tissues rather than a sole marker for chondrogenesis
during embryonic development [39—41]. Indeed, it has
been reported that COL2A1 is expressed in the floor
plate of the central nervous system [42], which provides
a plausible explanation for our observation of COL2AI1
expression in neurogenic cells. This may also explain
why there are many COL2AI-positive cells not express-
ing the selected surface markers. CD146, CD166, and
PDGFRp may be specific to chondroprogenitors as op-
posed to cells of other lineages also expressing collagen
type II; thus, purifying the population as shown with in-
creased COL2A1 IHC labeling when compared to sort-
ing for COL2AI alone. Following sorting for these
markers, the size of the chondrogenic SOX9/COL2A1
population was increased and, while the neural SOX2
populations were reduced, a SOX2/TTR population
remained. In fact, this population had a high expression
of CD47, an integrin-associated and modulating protein
[28] that could be used as an additional marker for sort-
ing in future experiments to improve homogeneity. The
expression of nestin and several mesenchyme markers
appeared to be permissive in sorted cells, suggesting that
PDGFRpB/CD146/CD166 triple-positive cells may still
have a similar signature as neural crest cells [43, 44] and
might come primarily from mesenchyme populations in
unsorted cells. Nonetheless, despite the presence of 6
unique cell clusters, including the SOX2/TTR popula-
tion, sorted chondroprogenitor cells showed robust
chondrogenic capacity.

The sorted chondroprogenitors, which all express
PDGEFRp, CD146, and CD166, were found to be local-
ized in the mesenchyme clusters of unsorted cells. The
alignment of the unsorted and sorted populations by
CCA allowed us to compare similarities and differences
between the two groups. After alignment, the largest cell
cluster expressed histone H4 (HIST1H4C). Histones are
primarily synthesized during the S-phase of the cell cycle
to package the replicated DNA [45], thus indicating the
large portion of cells in both sorted and unsorted popu-
lations are proliferative. Furthermore, there was a de-
crease in insulin-like growth factor binding protein-5
(IGEBPS5) expression in sorted cells among the IGFBP5/
CO2A1 population compared to unsorted. IGFBP5 plays
a role in insulin-like growth factor-1 (IGF-1)-dependent
chondrocyte proliferation [46] and protects cartilage
during OA-induced degeneration [47]. It is possible that
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sorted cells may be precursors not fully committed to
chondrogenic lineage in comparison with unsorted cells.
This could be further supported by the observation that
sorted cells had increased expression in neural crest and
proliferation markers (i.e.,, SOX4 and TUBAIA, respect-
ively) [48]. Indeed, for all populations identified in the
sorted cells, we found that they exhibited elevated ex-
pression in proliferative and mesenchymal genes, further
suggesting that sorted cells were primarily derived from
mesenchyme populations in unsorted cells. Nonetheless,
subpopulations in sorted cells still expressed unique
gene signatures as shown by the clustering. This finding
implies that chondrocytes may differentiate from mesen-
chyme cells with a variety of transcriptomic profiles if
given the correct signaling cues with appropriate timing.

Cartilaginous pellets derived from sorted chondropro-
genitor cells showed a significant increase in chondrogenic
matrix production and gene expression along with the
elimination of a surrounding layer of non-chondrocyte-
like cells. Despite the increase in COLIA1 gene expres-
sion, COL1A1 protein, as indicated by IHC labeling, does
not reflect its gene expression, implying a potential possi-
bility of post-transcriptional regulation of COL1A1 in pro-
tein translation [49]. These results also suggest that the
matrix produced by the hiPSC-derived chondrocytes is
similar to hyaline cartilage instead of fibrocartilage which
is rich in COL1A1 protein. Surprisingly, there was also a
relatively small increase in IHC labeling of COL10A1, a
matrix protein often associated with hypertrophic chon-
drocytes [50, 51]. Interestingly, COL6A1 was observed to
be more localized around the cells in pellets derived from
sorted cells. In developing neonatal cartilage, COL6AL is
found throughout the matrix, but with maturity, it is only
found in the pericellular matrix surrounding the chondro-
cytes [52-54]. The increased expression in COL10A1 at
both  mRNA and protein levels alongside the co-
localization of COL6A1 around chondrocytes suggests
that the chondrocytes derived from the sorted cells were
at more mature stages as compared to the chondrocytes
derived from unsorted cells after 28 days of chondrogenic
culture. With maturity and COL10A1 secretion, there is a
possibility that these cells may further differentiate into
hypertrophic chondrocytes and undergo endochondral os-
sification. Future studies could be done to investigate the
differentiation trajectory with more time in culture and
in vivo.

As cell sorting can significantly decrease the number
of functional cells [55], we also examined the effects of
cell expansion on the differentiation potential of the
sorted cells prior to chondrogenesis. Cells in the first
passage following sorting exhibit high chondrogenic po-
tential and sGAG staining in pellet culture. However, in
subsequent passages, cells showed signs of dedifferenti-
ation and loss of chondrogenic capacity, similar to that
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observed in primary chondrocytes [56] as well as simi-
larly sorted mouse iPSCs [25]. The decreased chondro-
genic potential of sorted cells may result from telomere
erosion [57], plating density (e.g., cell-cell and cell-
matrix interactions) [56, 58-60], mechanobiological
factors (e.g., plate stiffness and/or coating) [61, 62], or
culture medium (e.g., low vs. high glucose, growth fac-
tors) [58, 61]. While we used an expansion media similar
to MSC expansion media due to similarities of the cells,
in the future, the media could be altered by changing
the glucose level [60] and/or adding growth factors such
as fibroblastic growth factor (FGF)-2 and FGF-4, bone
morphogenic protein (BMP)-2 and BMP-3, transforming
growth factor-beta (TGFp)-3, heparin-binding epidermal
growth factor (EGF), and platelet-derived growth factor
(PDGF)-BB [58, 61, 63] as these have been shown to
maintain and improve multipotency and chondrogenic

capacity.

Conclusions

In conclusion, we have identified a unique chondropro-
genitor population from hiPSCs which expresses
PDGEFRp, CD146, and CD166 and has strong chondro-
genic potential. While the population does share some
characteristics with previously defined chondroprogeni-
tors and traditionally defined MSCs, it has a distinct pro-
file. The methods and findings in this study will
contribute to future cartilage tissue engineering and dis-
ease modeling studies to improve the understanding and
treatment of joint diseases such as OA.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/513287-020-01597-8.

Additional file 1: Figure S1. related to Figure 2 and 3. GO enrichment
analysis of unsorted and sorted cells. (A) Top 10 GO terms (biological
process) that were associated with each population in unsorted cells. (B)
CD47 was highly expressed in SOX2/TTR+ cells. (C) Top 10 GO terms
(biological process) that were associated with each population in sorted
cells. Figure S2. related to Figure 2 and 3. Overall gene expression of
sorted and unsorted chondroprogenitors. RT-gPCR reveals differences be-
tween sorted and unsorted chondroprogenitor cells in overall expression
of (A) neurogenic, (B) mesenchymal, and (C) chondrogenic genes. Gene
expression in reference to undifferentiated hiPSCs with housekeeping
gene TBP. * p < 0.05. *** p < 0.001. Data represented as mean + SEM. n
= 4 samples/group. Figure S3 related to Figure 2 and 3. Expression pro-
files of pro-chondrogenic genes in sorted and unsorted chondroprogeni-
tor cells. scRNA-seq reveals that sorted and unsorted cells had distinct
gene expression patterns of several markers that were proposed to be
pro-chondrogenic identified by previous studies. Figure S4 related to
Fig. 5. Histology for matrix proteins. Safranin-O staining for sGAG showing
pellets derived from sorted chondroprogenitor cells had more robust
staining and homogenous cell morphology compared to pellets derived
from unsorted cells in two individual experimental replicates. Scale bar =
200 pum. Inset scale bar = 400 um. Figure S5 related to Figure 5. IHC la-
beling for COL6AT. There was more distributed labeling for COL6AT in
unsorted chondroprogenitor pellets compared to the localization around
cells in sorted chondroprogenitor pellets. Scale bar = 200 pm. Inset scale

bar = 400 pym. Figure S6 related to Figure 6. Alternative analysis of gene
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expression. Expression of chondrogenic genes ACAN, SOX9, and COL2AT,
fibrocartilage and bone matrix marker COLTAT, and hypertrophic cartilage
marker COLT0AT was significantly increased with sorting. Cr value of gene
of interest was normalized to Cy value of housekeeping gene TBP for
each sample. ** p < 0.01. *** p < 0.001. **** p < 0.0001. Data represented
as mean + SEM. n = 6-7 per group: 2 experimental replicates, 3-4 tech-
nical replicates (pellets). Figure S7. Histology of pellets derived from in vitro
expanded unsorted and sorted chondroprogenitors. Chondrogenic capacity
was maintained after one passage of both unsorted and sorted chondropro-
genitor cells as shown by staining for SGAG. There was more robust staining
in pellets derived from sorted cells. Safranin-O staining for SGAG showed simi-
lar loss of chondrogenic capacity for both unsorted and sorted chondropro-
genitor cells through four passages. Table S1. Antibodies used for flow
cytometry and sorting. Table $2. Human primer sequences. Primers were
used for RT-gPCR and are listed as 5’ to 3.
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